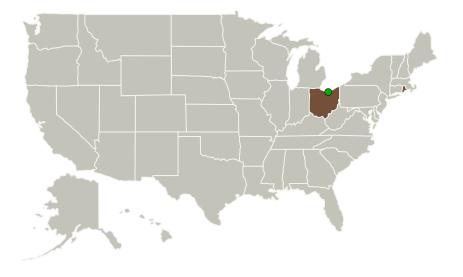
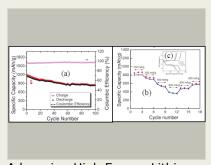
Advancing High Energy Lithium-Sulfur Batteries, Phase I



Completed Technology Project (2014 - 2014)


Project Introduction

Lithium-Ion batteries have been a main source of energy for many aerospace applications over the past decade. Future space missions are facing a number of challenging requirements, including significant increase in specific energy, approaching 500 Wh/kg, and energy density of 700 Wh/l at cell level. Compared to state-of-the-art technology today, a reduction in mass and volume are necessary, along with improvements for functioning in harsh space environments and an increase in reliability. Yardney Technical Products, Inc., a world leader in cutting-edge battery technology, in collaboration with Purdue University, proposes developing lithium-sulfur battery technology. This will have a cathode based on a novel, sulfur mesoporous carbon composite. In addition, the proposed Phase I research will include lithium dendrite suppressive electrolyte for a significant improvement in safety.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Yardney Technical Products, Inc.	Lead Organization	Industry	East Greenwich, Rhode Island
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Advancing High Energy Lithium-Sulfur Batteries Project Image

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions	2	
Images	2	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)	2	
Technology Areas		
Target Destinations		

Small Business Innovation Research/Small Business Tech Transfer

Advancing High Energy Lithium-Sulfur Batteries, Phase I

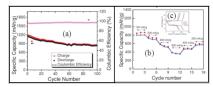
Completed Technology Project (2014 - 2014)

Primary U.S. Work Locations		
Ohio	Rhode Island	

Project Transitions

0

June 2014: Project Start



December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137553)

Images

Project Image

Advancing High Energy Lithium-Sulfur Batteries Project Image (https://techport.nasa.gov/imag e/129339)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Yardney Technical Products, Inc.

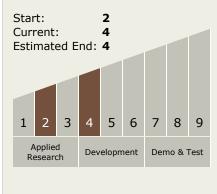
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Joseph Gnanaraj

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Advancing High Energy Lithium-Sulfur Batteries, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

